Click on a material below for the full optic properties:

AMTIR-1 Ge33As12Se55Glass

AMTIR-1 is an amorphous IR transmission material. It was originally produced for night vision systems, but is has other applications including optical elements and optical sensors for remote temperature sensing.

 

Optical Properties – AMTIR-1

Transmission Range: 750nm to 14痠
Refractive Index: 2.6055 @ 1.0痠, 2.4977 @ 10.0痠

Physical Properties – AMTIR-1

Hardness (Knoop): 170 kg/mm2
Youngs Modulus: 3.2 x 106 psi
Modulus of Rupture: 2700 psi
Upper Use Temperature: 300°C
Structure: Amorphous

Chemical Properties – AMTIR-1

Solubility: Insoluble in water.

Barium Fluoride (BaF2) Optical Crystals

Barium Fluoride (BaF2) is commonly used as a scintillator material and is useful as a transmission window material for IR spectroscopy particularly for analysis of fuel oil samples. This material is extremely sensitive to thermal shock.

Optical Properties – Barium Fluoride (BaF2) Optical Crystals

Transmission Range: 150nm to 11.5痠
Refractive Index: 1.46 @ 3.2 痠
Reflection Loss: 6.8% @ 3.0 痠 ( 2 surfaces)

Physical Properties – Barium Fluoride (BaF2) Optical Crystals

Melting Point: 1280° C
Hardness (Knoop): 82 psi
Young’s Modulus: 53.07 GPa
Modulus of Rupture: 3900 psi
Structure: Cubic—111 cleavage plane

Chemical Properties– Barium Fluoride (BaF2) Optical Crystals

Solubility: 0.17gm./100 gm water @ 23° C. Soluble in acid and NH4Cl.

 

BK-7 Borosilicate Crown Glass

BK-7 is typically used in visible light applications and at 1064nm where, among other things, it is useful as a protective window for YAG lasers.

Optical Properties – BK-7 Borosilicate Crown Glass

Transmission Range: 300nm to 2.0 µm (useful range)
Refractive Index: 1.50

Physical Properties – BK-7 Borosilicate Crown Glass

Hardness (Knoop): 520 kg/mm2
Modulus of Rupture: 2400 psi
Structure: Amorphous

Chemical Properties – BK-7 Borosilicate Crown Glass

Solubility: Insoluble in water.

Cadmium Magnesium Telluride (CdMgTe)

The ternary compound Cadmium Magnesium Telluride (“CdMgTe”) is one of ICL’s newest products. CdMgTe may become the material of choice for room temperature gamma ray detectors. It may also have applications such as light emitting diodes (LED) and epitaxial substrates for thin films. At present, there is a paucity of data available in respect of this material and research is ongoing. See the bibliography below. The spectral data shown is for a 5.6 mm thick sample.

The ideal band gap for radiation detectors is 1.7 to 2.2 eV. This must be combined with a large molecular mass, high resistivity and high mobility & lifetime (µτ). The material of choice at present is CdZnTe. These energy bandgap requirements can be better realized with low concentration of Mg in the new solid solution Cd1-xMgxTe . The energy bandgap of Cd1-xMgxTe exceeds that of CdZnTe or CdMnTe and molecular mass is comparable.

Material & CompositionMolecular MassEnergy Bandgap, eV
Cd0.9Zn0.1Te237.61.57
Cd0.95Mn0.05Te237.11.57
Cd0.95Mg0.05Te235.61.60
Cd0.9Mg0.1Te231.11.69

Properties

Crystal space group: cubic, F4bar3m

Band gap: Eg (x) = 1.52+1.7x

Resistivity: undoped–10grade10 Ohm.cm; doped–0.01 Ohm.cm

Conduction: n – type and p – type

Composition available: Cd(1-x)MgxTe (x=0.01-0.5)

CdMgTe Bibliography

  1. Itoh K. – J. Phys. Soc. Japan, 1967, v. 22, p.119.
  2. Jamamoto R., Itoh K. – Japan J. Appl. Phys. 1969, v.8, p. 341.
  3. Nakashima S. J. – J. Phys. Soc. Japan, 1967, v. 32, p.1438.
  4. Shitaya T., Ishida T. – Appl. Phys. Letter, 1972, v. 21, p. 523.
  5. Kodzi I. – Patent # 5144873, Japan.
  6. Toru I., Takeo S., Hisanao S. – Patent # 5240836, Japan.
  7. Masuo J., Masasi I., Hisao Y., et al. – J. Luminescence, 1978, v. 16, p. 21.
  8. CUNY NYC –Contractor, 2009 Ongoing studies, Infrared Studies of CdMgTe as the material of choice for Room Temperature Gamma-Ray Detectors

 

 

 

Cadmium Manganese Mercury Telluride (CdMnHgTe) Magneto Optical Crystals

The quaternary compound Cadmium Manganese Mercury Telluride (“CMHT”) is a magneto-optical material that can be tuned to vary the energy gap and the lattice constant independently. The properties of this magneto-optical material are dependent upon the actual composition. This material is under development at ICL and is not yet available for sale. The data below is based upon the composition Cd 0.325 MN 0.425 Hg 0.25 Te.

CMHT has a huge Verdet constant. Potential applications for this material (as well as CdMnTe) include Faraday rotation devices ( optical isolators), LEDs, lasers, electromagnetic interference free devices, field tunable phase shifters, small coupled solar cells for fly-by-light applications, phased array radar with completely fiber-fed antennae, bomb detonators, harsh environment sensors. The tenability of CMHT makes it possible to integrate CMHT with electronic devices based upon III-V compounds.

Optical Properties – Cadmium Manganese Mercury Telluride (CdMnHgTe) Magneto Optical Crystals

Transmission Range: 750nm to 22 痠
Verdet constant: 0.47min/E*cm@1064nm, 0.4min/E*cm@1112nm

Physical Properties – Cadmium Manganese Mercury Telluride (CdMnHgTe) Magneto Optical Crystals

Structure: cubic, Zink blende
Melting Point: 702° C +/- 6° C

Cadmium Manganese Telluride (CdMnTe) Magneto Optical Crystals

The ternary compound Cadmium Manganese Telluride (“CMT”) is a magneto-optical material that is ICL’s newest crystal product. This magneto-optical material has a giant Verdetconstant.

Potential applications for this material (as well as CdMnHgTe which is under development ) include Faraday rotation devices (optical isolators in the range 630nm to 1100nm ), LEDs, spintronicss, electro-magnetic interference free devices, field tunable phase shifters, small coupled solar cells for fly-by-light applications, phased array radar with completely fiber-fed antennae, bomb detonators and harsh environment sensors.

At the optimal composition, absorption does not increase with pathlength (thickness) although transmission will vary. Absorption is composition dependent. The spectral data shown is for a 2mm thick sample. ICL’s standard processing for CdMnTe is flatness of 1 l, parallelism of 30 arc seconds, optical surface quality 60-40, reflection loss with broadband AR coating < 0.05% @ 880-1100nm, Max. Ø 19mm.

Optimal Composition:

Cd 0.55 Mn 0.45 Te

Optical Properties – Cadmium Manganese Telluride (CdMnTe) Magneto Optical Crystals

Transmission Range: 630nm to 22痠
Verdet constant: 0.67min/E*cm @ 904nm, 7min/E*cm @ 630nm
Absorbance: 0.3 cm-1 @ 800nm, ~0.2 cm-1 @ 904nm, 0.12 cm-1 @ 1000nm, <0.1cm-1@1100nm, 0.02 cm-1 – 0.03 cm-1 @1500nm
Extinction: Emin -28db, Emax -22db
Reflection Loss: 32%@904nm (2 surfaces)

Physical Properties— Cadmium Manganese Telluride (CdMnTe) MagnetoOptical Crystals

Damage Threshold: 3j/cm2
Structure: cubic, Zink blende
Melting Point: ~ 1070° C

Chemical Properties – Cadmium Manganese Telluride (CdMnTe) Magneto Optical Crystals

Solubility: Insoluble in water.

 

 

 

 

Cadmium Telluride (CdTe) Optical Crystals

Cadmium Telluride (CdTe) is useful for infrared optical windows, as a solar cell material and as an electro-optic modulator. An early form of CdTe was sold as IRTRAN-6.

Optical Properties – Cadmium Telluride (CdTe) Optical Crystals

Transmission Range : 2-25痠
Refractive Index: 2.67 @ 10痠
Reflection Loss: 34.3% at 10痠

Physical Properties – Cadmium Telluride (CdTe) Optical Crystals

Melting Point: 1092°C
Structure: Cubic, Zincblende

Chemical Properties– Cadmium Telluride (CdTe) Optical Crystals

Solubility: Insoluble in water. Attacked by HNO3.

 

Calcium Fluoride (CaF2) Optical Crystals

Calcium Fluoride (CaF2) is commonly sold in two (2) grades – IR grade and UV grade. UV grade CaFis more expensive. CaFis used in lens for cameras, photolithography and IR spectroscopy.

 

Optical Properties – Calcium Fluoride (CaF2) Optical Crystals

Transmission Range: 130nm to 9ľm
Refractive Index: 1.40 @ 5ľm
Reflection Loss: 5.4% @ 5ľm ( 2 surfaces)

Physical Properties – Calcium Fluoride (CaF2) Optical Crystals

Melting Point: 1360° C
Hardness (Knoop): 158 psi
Young’s Modulus: 75.8 GPa
Modulus of Rupture: 5300 psi
Structure: Cubic—111 cleavage plane

Chemical Properties– Calcium Fluoride (CaF2) Optical Crystals

Solubility: 0.0017gm./100 gm water @ 20° C. Insoluble in most bases and acids. Soluble in NH4 salts.

Cesium Iodide (CsI) Optical Crystals

Cesium Iodide is useful for beam splitters for Far IR spectrophotometers, IR transmission windows and scintillator applications. Because this material is so soft and extremely hygroscopic, it is very difficult to polish.

Optical Properties – Cesium Iodide (CsI) Optical Crystals

Transmission Range: 250nm to 55痠
Refractive Index: 1.739 at 10.6痠
Reflection Loss: 13.6% @ 10.6痠 ( 2 surfaces)

Physical Properties– Cesium Iodide (CsI) Optical Crystals

Melting Point: 621° C
Hardness (Knoop): 20 kg/mm2
Young’s Modulus: 5.3 GPa
Modulus of Rupture: 810 psi
Apparent Elastic Limit: 810 psi
Structure: Cubic, no cleavage

Chemical Properties– Cesium Iodide (CsI) Optical Crystals

Solubility: 44 gm/ 100 gm water @ 0° C. Soluble in alcohol.

 

 

Fused Silica (SiO2) IR & UV Grade

Fused Silica comes in IR and UV grades. The IR grades are sold under several trademarks, including Infrasil. This material is sometimes referred to by the misnomer crystal quartz. Synthetic crystal quartz is bi-refringent and its applications differ from those of fused silica. The IR grade of this material is useful for IR spectroscopy as a window material for cells and cuvettes.

Optical Properties – Fused Silica (SiO2) IR Grade

Transmission Range: 250nm to 3.5 痠
Refractive Index: 1.50 @ 260nm, 1.40 @ 3.7痠

Physical Properties– Fused Silica (SiO2) IR Grade

Hardness (Knoop): 460 kg/mm2
Apparent Elastic Limit: 7200 psi
Modulus of Rupture: 7100 psi
Structure: Amorphous

Chemical Properties – Fused Silica (SiO2) IR Grade

Solubility: Insoluble in water. Soluble in HF.

Fused Silica (SiO2) UV Grade

The UV grades are sold under several trade names including Suprasil. This material is sometimes referred to by the misnomer crystal quartz. Synthetic crystal quartz is bi-refringent and its applications differ from those of fused silica. The UV grade of this material is useful for UV applications, which include spectroscopy cuvettes and applications at 1064nm such as YAG laser protective windows.

Optical Properties – Fused Silica (SiO2) UV Grade

Transmission Range: 180nm to 2.5痠
Refractive Index: 1.53 @ 220nm, 1.45 @ 1.05痠

Physical Properties– Fused Silica (SiO2) UV Grade

Hardness (Knoop): 460 kg/mm2
Apparent Elastic Limit: 49.64 MPa
Modulus of Rupture: 7100 psi
Structure: Amorphous

Chemical Properties – Fused Silica (SiO2) UV Grade

Solubility: Insoluble in water. Soluble in HF.

Fused Silica (SiO2) UV Grade

Germanium (Ge) Optical Crystals

Germanium (Ge) is useful for ATR prisms, CO 2 laser optics, optical coatings for beam splitters and other IR optical applications. This material is somewhat brittle and tends to chip and spall.

Optical Properties – Germanium (Ge) Optical Crystals

Transmission Range: 1.8ľm to 23ľm
Refractive Index: 4.0
Reflection Loss: 52.9 @ 10.6ľm (2 surfaces)
dN/dT: 396 x 10-6/°C

Physical Properties– Germanium (Ge) Optical Crystals

Melting Point: 936° C
Hardness (Knoop): 780 kg/mm2
Young’s Modulus: 102.7 GPa (100)
Modulus of Rupture: 7000 psi
Structure: Cubic

Chemical Properties- Germanium (Ge) Optical Crystals

Solubility: Insoluble in water. Soluble in hot H2SO4 and aqua-regia.

Magnesium Fluoride (MgF2) Optical Crystals

Magnesium Fluoride (MgF2) is commonly used for UV windows, lenses and polarisers. It is also usful in its transmission range for some IR spectroscopy applications. Eastman Kodak produced this material in polycrystalline form as Irtran-1® (not to be confused with Irtran-2® which was ZnS).

 

Optical Properties – Magnesium Fluoride (MgF2) Optical Crystals

Transmission Range: 130 nm to 9 microns
Refractive Index: 1.37-1.38
Reflection Loss: 11.2% @ 120 nm, 4% @ 3 microns ( 2 surfaces)

Physical Properties-Magnesium Fluoride (MgF2)Optical Crystals

Melting Point: 1255° C
Hardness (Knoop): 415 kg/mm2
Young’s Modulus: 138.5 GPa
Apparent Elastic Limit: 7200 psi
Structure: Tetragonal

Chemical Properties-Magnesium Fluoride (MgF2)Optical Crystals

Solubility: <0.0002 gm./100 gm water @ 0° C.

 

Potassium Bromide (KBr) Optical Crystals

Potassium Bromide is commonly used for infrared transmission windows ingas and liquid sample cells used with infrared and FTIR spectrophotometers and for beam splitters for spectrophotometers. KBr windows are soft and hygroscopic. ICL is the only company in the United States that grows KBr.

 

Optical Properties-Potassium Bromide (KBr) Optical Crystals

Transmission Range: 230nm to 25痠
Refractive Index: 1.524 at 11痠
Reflection Loss: 8.4% at 10 痠 ( 2 surfaces)

Physical Properties-Potassium Bromide (KBr) Optical Crystals

Melting Point: 730° C
Young’s Modulus: 26.8 GPa
Apparent Elastic Limit: 160 psi
Structure: Cubic- (100) cleavage plane

Chemical Properties-Potassium Bromide (KBr) Optical Crystals

Solubility: 53.4gm/100gm H2O at 0° C

Potassium Chloride (KCl) Optical Crystals

Potassium Chloride (KCl) is commonly used for infrared transmission crystal windows in gas and liquid sample cells used with infrared and FTIR spectrophotometers. KCl crystal windows are particularly useful for spatter barrier windows in CO2 lasers because they have a low refractive index at 10.6 microns and the damage threshold is high. KCl is hygroscopic.

Optical Properties – Potassium Chloride (KCl) Optical Crystals

Transmission Range: 0.21 to 20 microns
Refractive Index: 1.456 at 10 microns
Reflection Loss: 6.8% at 10.6 microns ( 2 surfaces)
dN/dT (Expansion Coefficient): -33.2 x 10-6/°C
dL-dT(Refractive Index Gradient): 40 x 10-6/°C
Coefficient of Absorption: 0.001 cm-1

Physical Properties – Potassium Chloride (KCl) Optical Crystals

Thermal Conductivity: (W/cm K): 0.036
Damage Threshold (Newman & Novak): 4GW/cmor 2j/ cm0.5-1ns pulse rate
Damage Threshold (Kovalev & Faizullov): 4.2j/ cm1.7ns pulse rate
Melting Point: 776° C
Young尽 Modulus: 29.67 GPa
Apparent Elastic Limit: 330 psi
Structure: Cubic– (100) cleavage plane

Chemical Properties – Potassium Chloride (KCl) Optical Crystals

Solubility: 34.7gm/100gm H2O at 20° C

Sapphire (Al2O3) Optical Crystals

Sapphire (Al2O3) is an extremely hard material which is useful for UV, NIRand IR applications through 5 microns. It is particularly useful for high pressure and high temperature applications.

Optical Properties – Sapphire (Al2O3) Optical Crystals

Transmission Range: 150 nm to 5.5 microns
Refractive Index: 1.73 at 2.5 microns
Reflection Loss: 10% at 3 microns ( 2 surfaces)

Physical Properties – Sapphire (Al2O3) Optical Crystals

Melting Point: 2040° C
Hardness (Knoop): 2200 kg/mm2
Young’s Modulus: 335 GPa
Modulus of Rupture: 65,000
Structure: Hexagonal-Rhombohedral

Chemical Properties – Sapphire (Al2O3) Optical Crystals

Solubility: 98 x 10-6 gm/100 gm water. Slightly soluble in acids and bases.

 

Silicon (Si) Optical Crystals

Silicon (Si) is commonly used as a window material for far infrared transmission. Although the material has an absorbance edge at about 8 microns, it transmits in the 50 to 100+ micron range, making it a useful alternative to CsI for aqueous samples analyzed by IR spectroscopy. It is also useful for some ATR applications.

Optical Properties- Silicon (Si) Optical Crystals

Transmission Range: 1.2µm to 10µm & 48 to >100 µm
Refractive Index: 3.42 at 10 µm
Reflection Loss: 46% at 10 µm ( 2 surfaces)

Physical Properties- Silicon (Si) Optical Crystals

Melting Point: 1420° C
Hardness (Knoop): 1150 kg/mm2
Young’s Modulus: 131 GPa
Modulus of Rupture: 9000
Structure: Cubic

Chemical Properties- Silicon (Si) Optical Crystals

Solubility: insoluble in water. Insoluble in most acids and bases. Soluble in HF and HNO3

Silver Bromide (AgBr) Optical Crystals

Silver Bromide (AgBr) is an orange colored optical material commonly used for infrared transmission windows in gas and liquid sample cells used with infrared and FTIR spectrophotometers. It can be used in place of AgCl, KBr, KRS-5 and Cesium Iodide (CsI). AgBr can be used with aqueous samples that would attack CsI and KBr optics.

AgBr has a wide transmission range comparable to KRS-5 but does not exhibit the toxicity of KRS-5. AgBr has a wider transmission range than does AgCl, is harder than AgCl and it is not as sensitive to light as AgCl. When used in an FTIR instrument, the photosensitivity of AgBr is manageable and with some care these windows will have a long service life. The wide transmission range of AgBr, its relative insolubility in water and its lower sensitivity to light exposure makes AgBr an extremely versatile IR window.

Optical Properties- Silver Bromide (AgBr) Optical Crystals

Transmission Range : 400nm-35痠
Refractive Index: 2.0 @ 10.6痠
Reflection Loss: 20% at 10.6痠 (2 surfaces)

Physical Properties- Silver Bromide (AgBr) Optical Crystals

Melting Point: 432°C
Structure: Cubic, no cleavage, cold flows

Chemical Properties- Silver Bromide (AgBr) Optical Crystals

Solubility: 12 x 10-6 gm/100gm water at 20°C

Silver Chloride (AgCl) Optical Crystals

Silver Chloride (AgCl) is commonly used for infrared transmission windows ingas and liquid sample cells used with infrared and FTIR spectrophotometers in place of Potassium Bromide (KBr) with aqueous samples that would attack KBr optics. It has a wide transmission range and is relatively insoluble in water, but it darkens when exposed to light.

Optical Properties- Silver Chloride (AgCl) Optical Crystals

Transmission Range: 400 nm to 30痠
Refractive Index: 1.978 at 10.6痠
Reflection Loss: 19.5% at 10痠 ( 2 surfaces)

Physical Properties- Silver Chloride (AgCl) Optical Crystals

Melting Point: 457° C
Young’s Modulus: 19.98 GPa
Apparent Elastic Limit: 3800 psi
Structure: Cubic, no cleavage, cold flows

Chemical Properties- Silver Chloride (AgCl) Optical Crystals

Solubility: 0.52×10-3gm/100gm H2O at 50° C

Sodium Chloride (NaCl) Optical Crystals

Sodium Chloride is the most common infrared transmission crystal window for gas and liquid sample cells used with infrared and FTIR spectrophotometers. It is also useful for CO2 lasers, although KCl is normally preferable due to its lower refractive index at 10.6 microns. NaCl windows are soft and hygroscopic.

Optical Properties- Sodium Chloride (NaCl) Optical Crystals

Transmission Range: 0.2 to 20 microns
Refractive Index: 1.494 at 10 microns
Reflection Loss: 7.5% at 10 microns ( 2 surfaces)
dN/dT: -36.2 x 10-6/°C at 0.7 microns

Physical Properties- Sodium Chloride (NaCl) Optical Crystals

Melting Point: 801° C
Young’s Modulus: 39.98 GPa
Apparent Elastic Limit: 350 psi
Structure: Cubic-(100) cleavage plane

Chemical Properties- Sodium Chloride (NaCl) Optical Crystals

Solubility: 35.7gm/100gm H2O at 0° C

 

Thallium Bromoiodide (KRS-5) Optical Crystals

KRs-5 (TlBr-TlI) is a gorgeous red crystal commonly used for attenuated total reflection prisms for IR spectroscopy. It is also used as an infrared transmission window in gas and liquid sample cells used with FTIR spectrophotometers in place of Potassium Bromide (KBr) or Cesium Iodide (CsI) for analysis of aqueous samples that would attack KBr or CsI optics. It has a wide transmission range and is virtually insoluble in water.

It is a useful alternative to AgCl since it is not photo-sensitive and for ATR applications it will transmit well beyond the 18 micron useful range of ZnSe. KRS-5 is considered toxic, but in our opinion it is safe for IR spectroscopic applications when properly handled.

 

Optical Properties- KRS-5 Optical Crystals

Transmission Range: 0.6 to 32痠
Refractive Index: 2.37 at 10痠
Reflection Loss: 28.4% at 10痠 ( 2 surfaces)

Physical Properties- KRS-5 Optical Crystals

Melting Point: 414.5° C
Young’s Modulus: 15.85 GPa
Apparent Elastic Limit: 3800 psi
Structure: Cubic, no cleavage, CsCl structure

Chemical Properties- KRS-5 Optical Crystals

Solubility: 0.05gm/100gm H2O @ 20° C

 

Zinc Selenide (ZnSe)

Zinc Selenide (ZnSe) is commonly used for CO2 laser focusing lenses, night vision applications, ATR prisms and transmission windows for IR spectroscopy.

 

Optical Properties- Zinc Selenide (ZnSe) Optical Crystals

Transmission Range: 500nm to 22痠
Refractive Index: 2.4 at 10.6痠
Reflection Loss: 29% at 10.6 痠 ( 2 surfaces)

Physical Properties- Zinc Selenide (ZnSe) Optical Crystals

Melting Point: 1525° C
Hardness (Knoop): 120 kg/mm2
Young’s Modulus: 67.2 GPa
Modulus of Rupture: 8000 psi
Structure: Cubic ( typically polycrystalline by chemical vapor deposition)

Chemical Properties- Zinc Selenide (ZnSe) Optical Crystals

Solubility: Insoluble in water. Soluble in HNO3. Soluble in strong acids.

Zinc Sulfide (ZnS) Optical Crystals

Zinc Sulfide (ZnS) is used as a transmission window for IR spectroscopy. Zinc Sulfide (ZnS) is or has been produced under the trademarks Cleartran®and Irtran® . Cleartran® is a registered trademark of CVD Incorporated and Irtran® was a trademark of Eastman Kodak. The Kodak product was discontinued many years ago. When ordering Cleartran® ZnS, customers should specify Cleartran®.

Optical Properties- Zinc Sulfide (ZnS) Optical Crystals

Transmission Range: 370nm to 14痠
Refractive Index: 2.19 @ 10.5痠
Reflection Loss: 24% at 10.6痠 (2 surfaces)

Physical Properties- Zinc Sulfide (ZnS) Optical Crystals

Melting Point:
Hardness (Knoop): 240 kg/mm2
Young’s Modulus: 74.46 GPa
Modulus of Rupture: 10,000 psi
Structure: Cubic ( polycrystalline )

Chemical Properties- Zinc Sulfide (ZnS) Optical Crystals

Solubility: Insoluble in water. Soluble in HNO3. Soluble in strong acids.