Useful Formulae for Spectroscopy

CALCULATION OF MAXIMUM ALLOWABLE PRESSURES ON CIRCULAR WINDOW MATERIALS

Calculation of maximum pressure will depend upon a number of user selectable parameters. For instance, the window material, window size, flange size and a safety factor all may be varied depending upon application.

To calculate maximum allowable pressure, we must assume that the maximum stress in a uniform circular plate is given by the equation:

$$
S_{\text {max }}=\left(k \times D^{2} \times P\right) /\left(4 \times t^{2}\right)
$$

where k is a constant, the value for which depends upon whether or not the window is clamped use 0.75 for clamped windows and 1.125 for unclamped (See Fig. 2). Smax is the maximum stress, D is the window diameter under pressure (ie, the portion of window not supported by the flange as shown in the schematic in Figure 2), P is the load (expressed in psi), and t is the thickness of the window material. In the formula solving for t, the window diameter D can be expressed in any unit of measure such as mm or inches. To avoid plastic deformation a safety factor must be introduced where SF is a safety factor and Fa is apparent elastic limit for the material itself. Where apparent elastic limit is not available, use yield stress. Allowing for a safety factor (SF), the equations for calculation of maximum allowable pressure and for minimum window thickness (t) where the operating pressure (P) is known are:

$$
\mathrm{P}=4\left(\mathrm{Fa} \times \mathrm{t}^{2}\right) /\left(\mathrm{SF} \times k \times \mathrm{D}^{2}\right)
$$

The apparent elastic limits of some IR optical materials are listed below:

CaF2	5300	KCl	330
BaF2	3900	KBr	160
KRS-5	3800	CsI	810
NaCl	350	$\mathrm{MgF2}$	7200

ATR SPECTROSCOPY

The formulae set forth below are useful for ATR (MIR) spectroscopy.

Penetration Depth

The depth of penetration is defined by the formula:

$$
d p=\frac{\lambda}{2 \pi n_{1}\left(\sin ^{2} \Phi-n_{21}^{2}\right)^{1 / 2}}
$$

where I is the wavelength of the infrared light, $n 1$ is the refractive index of the ATR crystal, λ is the angle of incidence of the infrared beam at the boundary and n21 is the ratio of the refractive indices of the sample, ns, and ATR crystal,

$$
\mathrm{n}_{\mathrm{c}} \text { and } \mathrm{n}_{21}=\frac{\mathrm{n}_{\mathrm{s}}}{\mathrm{n}_{\mathrm{c}}}
$$

Since the evanescent wave decreases in intensity exponentially from the surface of the crystal, the penetration depth, dp , is defined as the distance at which the amplitude of this wave has decreased to (1/e) or 37% of its original value.

Effective Angle of Incidence

This is the angle of incidence of the infrared beam internally in the ATR crystal when a variable angle HATR such as the Varimax ${ }^{\text {TM }}$ is used for analysis. When the scale angle, ©scale, is not equal to the crystal face angle, Фface, the effective angle, Φ is different than the scale angle due to refraction.

$$
\begin{aligned}
& \Phi_{\text {actual }}=\Phi_{\text {scale }-\sin ^{-1} \quad\left[\frac{\sin \left(\Phi_{\text {scale }}-\Phi_{\text {face }}\right)}{n_{\text {crystal }}}\right]}^{n_{\text {crystal }}=\text { refractive index }}
\end{aligned}
$$

Number of Reflections

The number of reflections in the crystal gives a measure of the intensity of the resulting spectrum. This number is a function of the effective angle of incidence Φ, and the length, I, and thickness, t, of the crystal.

$$
N=\frac{1}{t \cot \Phi}
$$

Effective Pathlength

The effective pathlength, Peff, is defined as the product of the penetration depth dp , and the number of bounces, N, the IR beam makes within the crystal:

$$
P_{e f f}=d_{p} \times N
$$

INTERNATIONAL CRYSTAL LABORATORIES

11 Erie Street, Garfield, NJ
www.internationalcrystal.net
iclmail@internationalcrystal.net
Phone: 973-478-8944.
Fax: 973-478-4201

